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DR. NAOKO ELLIS
Professor, Chemical & Biological Engineering
University of British Columbia

CARBON CAPTURE TECHNOLOGY READINESS



3

© Sergio Berretta, P.Eng

Mineralization

CCUS PROCESS PATHWAY
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CARBON CAPTURE - CURRENT STATE

As of 2020:
• 28 large-scale operational carbon capture plants 
• Total capture capacity of 40 MtCO2/year
• Individual facility capacity ranging from 0.1 to 7.0 

MtCO2/year
• 16 facility under construction
• 21 in early development state

https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2131
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CO2 CONCENTRATION OF THE SOURCE
Air: 0.04%
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LEVELIZED COST OF CO2 CAPTURE BY SECTOR

https://www.iea.org/data-and-statistics/charts/levelised-cost-of-co2-capture-by-sector-and-initial-co2-concentration-2019
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POST-COMBUSTION CARBON CAPTURE
• Liquid solvent capture has been practiced in industry for > 50 years, e.g. in natural gas plants, 

ammonia, hydrogen streams.
• May also capture other components like H2S and NOx.
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OXY-FUEL COMBUSTION – AIR SEPARATION UNIT

• Air Separation Unit  before the Combustion separates O2 from the N2
• Flue gas contains almost no nitrogen, and the water vapour can be condensed, so that the 

flue gas is nearly pure CO2

Air
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Air
Combustor

O2

Condenser
Flue 
gas

Water

CO2
RecycleN2

Fuel
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CHEMICAL LOOPING SYSTEMS

• General scheme using lime as sorbent
• Solid sorbent is cycled through carbonator and calciner



10

CARBON CAPTURE COST AND READINESS

https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2131
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CARBON CAPTURE COST AND READINESS

https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2131
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CARBON CAPTURE COST AND READINESS

https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2131
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CARBON CAPTURE COST AND READINESS

https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2131
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RICHARD TRUMAN
Vice President, External Relations
Geoscience BC 

GEOLOGICAL KNOWLEDGE TO PROGRESS CCS IN BC
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ABOUT GEOSCIENCE BC

Not-for-profit society established in 2005: independent, public earth science research 
and data about minerals, energy and water resources that:
• Improves our collective level of geoscience knowledge;
• Informs responsible natural resource development and investment decisions;
• Catalyzes socio-economic opportunities; and
• Stimulates innovation and geoscience technologies.

WaterEnergyMinerals

Identifying Critical 
Minerals and Metals

• Regional geophysics 
and geochemistry.
• Innovative earth 
science tools to attract 
new investment.

Advancing Carbon Capture
and Storage (CCS)

• Industrial need for CCS geological atlas: identify 
and assess carbon storage targets in BC.
ü Carbon mineralization.
ü Sedimentary basins (deep saline aquifers) as 
carbon sinks.

Catalyzing Clean Energy
• Regional projects 
advancing geothermal 
power generation, 
electrification of industrial 
sites and low-carbon 
hydrogen generation.
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RELEVANT RESEARCH: EXAMPLES
Garibaldi Volcanic Belt Geothermal

https://www.geosciencebc.com/projects/2018-004/

• Collaboration with Geological Survey of Canada; 
seven universities: detailed study of geology.

• Informing decisions and attracting investment in 
geothermal energy in southwest BC – including 
potential low-carbon hydrogen production near 
Pemberton. 

• Community and Indigenous input and involvement.

Carbon Mineralization Potential
https://www.geosciencebc.com/projects/2018-038/

• Part of wide collaboration. Geoscience BC role: 
funding BC carbon mineralization potential map 
and index.

• Ultramafic rocks react with carbon dioxide, forming 
carbonate minerals to store carbon.

• Interim report published; final report and data due 
2022.

Sedimentary Basin Research

• History of sedimentary basin research since 2006: 
geophysics; stratigraphy.

• Past focus on Western Canadian Sedimentary 
Basin, especially water-related research.

• Also Nechako Basin and supporting projects in 
Bowser Basin.

https://www.geosciencebc.com/projects/2018-004/
https://www.geosciencebc.com/projects/2018-038/
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CCS: WHAT NEXT?

17

• Building consortia: funding, technical 
input, users

• A geological carbon capture and 
storage atlas for British Columbia: 
identify and assess carbon storage 
targets in BC.

Including launch of 
Geoscience BC 
membership 
opportunities: 
https://www.geoscience
bc.com/membership/

1. Northeast BC (Western 
Canadian Sedimentary Basin) 

Phased 
approach

• Other sedimentary basins: 
interest from Central, NW, 
SE, SW

• Potential for further 
carbon mineralization 
research

https://www.geosciencebc.com/membership/
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THANK YOU

@Geoscience BC  |  geosciencebc.com

Richard Truman, Vice President, External Relations truman@geosciencebc.com 778-929-1662
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DR. CURRAN CRAWFORD
Professor, Mechanical Engineering 
University of Victoria

OFFSHORE CARBON CAPTURE AND STORAGE 
POTENTIALS
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SYSTEM CONFIGURATIONS
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CONCEPT STUDY CURRENT STATE

Break-even price (full system) : 
approx. 850 USD/t CO2
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DIRECT AIR CAPTURE WITH FLOATING OFFSHORE WIND

Assumptions:
Capture rate = α = 74.5%
Exergy efficiency = η2nd = 7.8%
15 MW wind turbine @ Cf = 45%
DAC utilization =  90% 
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OFFSHORE INJECTION

Northern Lights Project Concept report
(2019). RE-PM673-00001. Equinor.

Hoffman, J. et al. (2017) ‘The Stones Project: 
Subsea, Umbilical, Riser and Flowline 
Systems’, in. Offshore Technology 
Conference, Offshore Technology 
Conference. doi:10.4043/27569-MS.
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SYSTEM OPTIMIZATION FRAMEWORK

Component sizing and costing
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DR. GREG DIPPLE
Professor, Geological Sciences
University of British Columbia

CARBON MINERALIZATION; 3 APPROACHES FOR B.C.



CARBON MINERALIZATION FOR CO2 REMOVAL

facilitate deployment. ',9, and policy
priorities include%

1. ',9, on speci>c in situ and e: situ
mineralization path#ays

-. "olving cross-cutting basic research
Iuestions via pilot-scale pro7ects

3. $onducting evaluations and ',9, at

the regional level to account for
heterogeneity #ithin the U.".

J. Techno-economic and lifecycle
analysis

F. $reating monitoring, reporting, and
veri>cation <M'E= standards

G. $reating an enabling policy

ENERGY FUTURES INITIATIVE | Page 11

FIGURE 2
Overview of CDR and Non-CDR Pathways for Mineralization

This 8gure shows pathways for ex situ and in situ mineralization, including those that do and do not
contribute to CDR- 9urple arrows show movement of carbon: white arrows show where transportation of
mineralization feedstocks is necessary- This 8gure does not include in situ CDR approaches that remove
carbon without the need for DAC or another source of CO2- "ource% EFI, -.-..

Cations
Minerals or 
industrial 

solid waste

CO2

Air capture
DAC

BECCS 
(BICRS)

Source: EFI 2020

Opportunities for B.C.
1) Mine Tailings with CO2

capture from air
2) Injection of DAC CO2 into 

tailings
3) Injection of DAC CO2 into 

subsurface

1, 2

3



Cation source (Mg2+)
and pH buffer

Mg2+

Mg2+ Mg2+

Mg2+

Source of CO2
(air or point source)

Permanent CO2 Storage

Mineral Carbonate 
Precip’n

Mineral dissolution

CO2 supply

• Carbon dioxide from industrial emissions 
and from air 

• Reacts with waste from mine tailings
• To store carbon dioxide in safe, permanent 

mineral form
• Costs in range $20-$100 / tonne CO2

GEOCHEMICAL FRAMEWORK



Depth Interval 
(km)

Serpentinite
Volume
(km3)

Sequestratio
n Capacity
(Gt CO2)

Method

0 to 1 988 56
ex-situ &
in-situ

0 to 2 3,689 210

2 to 4 4,162 5,139 in-situ

2 to full depth 4,292 5,300
Source: Mitchinson et al. (2020)

INVENTORY OF CAPACITY AND (AT) RATE (CaMP BC)



• Tailings from Baptiste and Turnagain Ni Deposits, Cassiar Chrysotile mine
• Carbon is mineralized in real time under field conditions
• Acceleration of air capture rates three to five over baseline air capture rates
• Capture experiments at 1-2,000 m2 footprint, tonnes tailings
• Sustained under field conditions for two weeks to eight months
• Gas phase and solid phase CO2 balances match

ACCELERATED AIR CAPTURE TRIALS



(Vanderzee et al., 2019)

CARBON NEGATIVE BATTERY METAL MINING
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DR. ELOD GYENGE
Professor, Chemical & Biological Engineering
University of British Columbia

Co-Founder & CSO
Agora Energy Technologies

NOVEL UTILIZATION OF CARBON DIOXIDE FOR 
ENERGY STORAGE



§ The	energy	transition	to	renewable	sources	requires	long-duration	and	cost-effective	storage

§ Mitigation	of	CO2 emissions	requires	cost-effective	large-scale	solutions

Challenges to decarbonization



Batteries	for	Energy	Storage:	Metal/Mineral	Supply	Chain	and	
Price	Challenges

CO2
CO2 Utilizat

ion

Vanadium

Lithium
Cobalt

Zinc $	3,800/t Zn

$45,000-
50,000/t LiCO3
$82,000/t Co

$27,500/t V2O5Can	we	utilize	
CO2	in	a	battery	?

Cost	of	CO2	
capture	from	
industrial	
emissions:
$	50	– 150	/t



Our	Solution:	The	CO2 Redox	Flow	Battery	(CRB)
|Global	IP	52	Countries|	

Objective:	To	develop	a	large-scale	CO2		battery	that	stores	renewable	energy	with	the	following	characteristics:
• High	energy	density	
• Long-duration	storage	at	a	low	cost
• Long	cycle	life	 34

1.6	MWh1	tonne

+	electrolytes

Captured	
CO2

Renewable

CHARGE

(carbonates/
bicarbonates)

Electricity

Value-added	
chemicals

DISCHARGE



CO2

CRB Potential

1 tonne CO2
14 Tesla model S vehicles, or 8930 km driven

65 Vancouver Houses

1.6 MWh

Daily electricity

1 charge of

2.3 MWh



Milestones Towards Commercialization

Bifunctional
catalysts

5k
W

0.5 MW … 100 MW

2017 2018 2019 2024 2025

Largest	module	(5	kW)



AGORA: AWARDS 2020/2021

Winners

Winners



+ 1.1 0C
+ 0.65 0C

120 years of atmospheric temperature change

Framing	
the	

problem

Designing
Engineering	
options

Incorporation

Thank you
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SERGIO BERETTA
Adjunct Professor, Chemical & Biological Engineering
University of British Columbia

CARBON CONVERSION READINESS & CCUS ECONOMICS
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CCUS PROCESS PATHWAY

© Sergio Berretta, P.Eng

Mineralization
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© Sergio Berretta, P.Eng

mineralization

CCUS PROCESS PATHWAY
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CARBON CAPTURE (CC) READINESS & ECONOMICS

Direct Air Capture (DAC)

Point Source Capture (PSC) 
(Absorption or Adsorption)

Biological Capture
(DAC or PSC)

Air /CO2
From atmosphere

Gas /CO2
From Point Source

Air /CO2
From atmosphere

or
Gas /CO2

From Point Source

CO2

CO2

Algae

TRL = 7

TRL = 9

TRL = 7-9

© Sergio Berretta, P.Eng

TRL: Technology 
Readiness Level



43

Direct Air Capture (DAC)

Point Source Capture (PSC) 
(Absorption or Adsorption)

Biological Capture
(DAC or PSC)

Air /CO2
From atmosphere

Gas /CO2
From Point Source

Air /CO2
From atmosphere

or
Gas /CO2

From Point Source

CO2

CO2

Algae

© Sergio Berretta, P.Eng

$200-400/ 
tonne of CO2
(today > $600)

$60-80/ 
tonne of CO2

Cost of Capture

CARBON CAPTURE (CC) READINESS & ECONOMICS
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Direct Air Capture (DAC)

Point Source Capture (PSC) 
(Absorption or Adsorption)

Biological Capture
(DAC or PSC)

Air /CO2
From atmosphere

Gas /CO2
From Point Source

Air /CO2
From atmosphere

or
Gas /CO2

From Point Source

CO2

CO2

Algae

© Sergio Berretta, P.Eng

$200-400/ 
tonne of CO2
(today > $600)

$60-80/ 
tonne of CO2

Cost of Capture

CO2 from air
< $0/tonne

CO2 from point source
> $1,000/tonne of   

CO2

CARBON CAPTURE (CC) READINESS & ECONOMICS
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© Sergio Berretta, P.Eng

CCUS PROCESS PATHWAY
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CARBON CAPTURE AND STORAGE (CCS) READINESS & ECONOMICS

TRL = individual parts 9 Cost of Capture and Storage (CCS) = $ < 0 to 70 / tonne of CO2

This strategy is partially used in some cement/concrete plants, and it is being expanded to other industries/ 
applications (e.g., mine tailings)

Thermodynamically, one of the few conversions of CO2 not requiring energy input
(not including the carbon capture step)

© Sergio Berretta, P.Eng
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TRL = 9 Cost of Capture and Storage (CCS) = $ 100 to 150 / tonne of CO2

Carbon Capture coupled with Geological Storage is already being used at a commercial scale (in the 
North Sea) in Europe, US, and Canada

Geological Storage

© Sergio Berretta, P.Eng

CARBON CAPTURE AND STORAGE (CCS) READINESS & ECONOMICS



48

Geological Storage

CO2 Capture from Air

TRL = 7 Cost of Capture and Storage (CCS) = $ 240 to 440 / tonne of CO2
(today > $600)

Geological Storage

Power Plant

electricity

emissions

Bioenergy with Carbon Capture and Storage (BECCS)
TRL = all individual parts 9 Cost of Capture and Storage (CCS) = $ 60 to 160 / tonne of CO2

biomassC
ar

bo
n 

   
N

eg
at

iv
e 

   
St

ra
te

gi
es

CARBON CAPTURE AND STORAGE (CCS) READINESS & ECONOMICS
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© Sergio Berretta, P.Eng

CCUS PROCESS PATHWAY
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© Sergio Berretta, P.Eng

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS
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CO2 is a molecule “without energy”, to make it useful, energy must be added (clean energy)

© Sergio Berretta, P.Eng

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS

Energy
(kJ/mol)

CO2

Carbonate60-180 kJ/mol

Methanol

Methane

50 kJ/mol
320 kJ/mol
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Thermo-catalytic Conversion Electrochemical Conversion

© Sergio Berretta, P.Eng

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS
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Methane

Hydrogen

CO2

Methane

Hydrogen

CO2Hydrogen
Production

Hydrogen
Production

Carbon
Capture

&
Storage

Hydrogen
Production

(electrochemically)

Water

Hydrogen

Renewable
Power

Grey Hydrogen Green Hydrogen Blue Hydrogen

$1.2 - 1.4 / kg of H2 $4 - 5 / kg of H2 $2.0 – 2.5 / kg of H2

© Sergio Berretta, P.Eng

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS
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© Sergio Berretta, P.Eng

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS



55

TRL = all individual parts 9
Cost of Capture and Utilization = $ 350 to 450 / tonne of CO2 (w/ green hydrogen)

Cost of Capture and Utilization = $ 150 to 250 / tonne of CO2 (w/ blue hydrogen)

Project – Haber

Australia

1.2 million tonne/year of urea

© Sergio Berretta, P.Eng

Green Urea
Production

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS

Carbon Capture

Hydrogen
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Hydrogen

TRL =  9
Cost of Capture and Utilization = $ 450 to 550 / tonne of CO2 (w/ green hydrogen)

Cost of Capture and Utilization = $ 250 to 350 / tonne of CO2 (w/ blue hydrogen)

George Olah Renewable Methanol Plant 
Iceland
4,000 tonne/year of methanol

© Sergio Berretta, P.Eng

Green Methanol
Production

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS

Carbon Capture
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TRL = individual parts 9 or 7
Cost of Capture and Utilization = $ > 1,000 / tonne of CO2 (w/ green hydrogen)

Cost of Capture and Utilization = $ 500 to 700 / tonne of CO2 (w/ blue hydrogen)

Methane 
Production

Audi e-gas (methane) Demonstration Plant 
Wertle, Germany

© Sergio Berretta, P.Eng

Green Methane
Production

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS

Carbon Capture

Hydrogen
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Audi e-gas Demonstration Plant 
Germany
Methane

George Olah Renewable Methanol 
Plant 
Iceland
4,000 tonne/year of methanol

Project – Haber
Australia
1.2 million tonne/year of urea

The more energetic  the
compound we are trying 
to make is, the higher the 

cost of carbon capture 
and utilization is!

© Sergio Berretta, P.Eng

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS

H
igher Energy / H

igher C
ost
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© Sergio Berretta, P.Eng

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS
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TRL = 4-5 Cost of Capture and Utilization = > $1,000 / tonne of CO2

Methanol 
Production

clean electricity

© Sergio Berretta, P.Eng

Green Methanol
Production

(electrochemically)

CARBON CAPTURE AND UTILIZATION (CCU) READINESS & ECONOMICS
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CARBON CONVERSION READINESS & CCUS ECONOMICS

clean electricity

Final thought

urea, 
methanol, 
methane, 
or …. 
production

Carbon Utilization

ORGreen
Hydrogen

1 Megatonne of CO2
per year

Approximately, 10% of all the 
electrical production of BC 

© Sergio Berretta, P.Eng

Any significant production of green hydrogen or 
electrochemical conversion of CO2 would require

massive amounts of renewable power

Carbon Capture
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DR. AMY KIM
Associate Professor, Transportation Engineering
University of British Columbia

PLANNING ADAPTABLE, MULTIMODAL 
NETWORKED SYSTEMS
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TRANSPORTATION INFRASTRUCTURE DECISIONS UNDER 
UNCERTAINTY AND CHANGING CONDITIONS

1. Transportation infrastructure decisions are made in the 
presence of many uncertainties

• Demands
• Climate change impacts

2. Long distance systems versus urban systems
• Distances cost $$
• Little to no redundancy
• If redundancy à another mode(s)

3. Costly, complex decisions must be made in these 
conditions

Clearing the Runway (5583010633).jpg by NASA ICE, licensed under CC BY 2.0

https://commons.wikimedia.org/wiki/File:Clearing_the_Runway_(5583010633).jpg
http://www.flickr.com/people/59345957@N05
https://creativecommons.org/licenses/by/2.0/
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TRANSPORTATION INFRASTRUCTURE 
DECISION FLEXIBILITY IN RESPONSE 
TO UNCERTAINTIES: 
Mackenzie Valley Highway, NWT

Tug and barges overwintering in Cambridge Bay after the annual sealift licensed under CC BY-SA 3.0
NWT Inuvik-Tuk winter road April 2012.jpg licensed under CC BY SA 4.0

Wrigley

Fort Good Hope

Norman Wells

Tuktoyaktuk

Déline

Colville Lake

Inuvik

Tulita

Mackenzie River

Beaufort Sea

Yellowknife

Paved all-weather highway
Gravel all-weather highway
Winter road
Airport/airstrip
Planned all-weather road sections, 
Mackenzie Valley Highway:

Hay River

https://commons.wikimedia.org/wiki/File:Sealift_ship_and_barges.jpg
https://creativecommons.org/licenses/by-nc/2.0/
NWT%20Inuvik-Tuk%20winter%20road%20April%202012.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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DO WE CONTINUE WITH THE CURRENT SYSTEM, KNOWING THAT 
BAD WATER SEASONS WILL RESULT IN HUGE COSTS? OR 
CONSTRUCT ALL-WEATHER ROAD ($B), AND WHEN?
Benefit-Cost Analysis using real options approach à Flexible decisions

Kim & Li, 2020
Li, Jin, & Kim, 2021

Stochastic 
process model OSD forecasts

FV forecasts

Historic marine open 
season days (OSD) –

climate proxy

Part 1: Model uncertainties

NPV matrix
(deterministic)

OSD and FV 
paths for 

Multimodal logistics 
and roadway 

construction costs

ROA 
method

Part 3: Real option analysis (ROA)
Discounted 
cash flow

Part 2: Cost-Benefit Analysis

Historic freight 
volumes (FV)

Final (extended) 
NPV

Optimal 
investment times

All-weather 
roadway 

segment 

Stochastic 
process model

Output

Method

Data inputs

Legend
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MACKENZIE VALLEY HIGHWAY DECISION MODEL RESULTS 

1) Construct or not construct? 

2) Construct in four phases? NORTHWEST 
TERRITORIES                

Wrigley

Fort Good Hope

Norman 
Wells

Tuktoyaktuk

Inuvik

Tulita

4

3

2

1

Yellowknife

Hay 
River1

N
PV

e , 
$M

300

400

500

600

700

800

900

1000

Segment: 1    2     3     4 

Build Phase 2 first (year 7)

Build Phase 1 second (year 9)

Build Phase 3 third (year 12)

Build Phase 4 last (year 14+)

Wait until Year 6
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ADAPTIVE AND RESILIENT MULTIMODAL TRANSPORT 
INFRASTRUCTURE DECISIONS

• Governance, ownership, operational characteristics differ from one mode to another
• Flexibility around decisions of infrastructure investment and operations – in the face of 

climate change impacts and changing/variable economic conditions – has value

Costs Benefits Benefits 
considering 
uncertainty

Benefits 
considering 
uncertainty 
AND 
flexibility

ITH Caribou Hills.jpg, licensed under CC BY SA 4.0

https://commons.wikimedia.org/wiki/File:ITH_Caribou_Hills.jpg
https://creativecommons.org/licenses/by/4.0/deed.en



