Breaking up ‘fatbergs’: UBC engineers develop technique to break down fats, oil and grease

Fog Buster
UBC professor Victor Lo and engineering researchers Asha Srinivasan and Ping Liao.

Cooking oil and similar waste can clog pipes, harm fish and even grow into solid deposits like the “fatbergs” that recently blocked London’s sewage system. But UBC researchers may have found a way to treat these fats, oils and grease—collectively called FOG—and turn them into energy.

Researchers heated FOG samples to temperatures between 90 and 110 degrees Celsius and added hydrogen peroxide, a chemical that kickstarts the breakdown of organic matter. Researchers said the treatment dramatically reduced the volume of solids in the FOG by as much as 80 per cent. It also released fatty acids from the mixture that can be broken down by bacteria in the next stage of treatment.

“FOG is a terrific source of organic material that microorganisms can feed on to produce methane gas, which is a valuable, renewable energy source. But if it’s too rich in organics, bacteria can’t handle it and the process breaks down. By preheating it to the right temperature, we ensure that the FOG is ready for the final treatment and can make the maximum amount of methane,” says research associate Asha Srinivasan.

She added that the methods developed at UBC will enable farmers to load more FOG into their biogas digesters—the large tanks that treat farm wastes, including cow manure, to produce methane. “Farmers typically restrict FOG to less than 30 per cent of the overall feed. But now the FOG can be broken down into simpler forms, so you can use much more than that, up to 75 per cent of the overall feed. You would recycle more oil waste and produce more methane at the same time.”

Ultimately, the technology can be used in municipal FOG management programs, says lead researcher Victor Lo, emeritus professor of civil engineering at UBC. “The principle would be the same: you could pretreat the FOG so it doesn’t clog the pipes, and add it to sewage sludge to produce methane from the mix,” said Lo.

“To the best of our knowledge, this type of pretreatment for FOG has not been studied before, although simple chemical methods do exist to break down FOG,” added Lo. “We’re hoping to do more research to find the optimal ratio of FOG to dairy manure so that they can be pretreated together.”

Moutoshi Saha, Kit Caufield, Otman Abida and Ping Huang Liao also contributed to the research, described in the July issue of Water, Air & Soil Pollution.

UBC Crest The official logo of the University of British Columbia. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. Caret An arrowhead indicating direction. E-commerce Cart A shopping cart. Time A clock. Chats Two speech clouds. Facebook The logo for the Facebook social media service. Home A house in silhouette. Information The letter 'i' in a circle. Calendar Location Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Social Media The globe is the default icon for a social media platform. TikTok The logo for the TikTok social media platform. Location Pin A map location pin. Mail An envelope. Telephone An antique telephone. Play A media play button. Search A magnifying glass. Arrow indicating share action A directional arrow. Speech Bubble A speech bubble. Star An outline of a star. Twitter The logo for the Twitter social media service. Urgent Message An exclamation mark in a speech bubble. User A silhouette of a person. Vimeo The logo for the Vimeo video sharing service. Youtube The logo for the YouTube video sharing service. Future of work A logo for the Future of Work category. Inclusive leadership A logo for the Inclusive leadership category. Planetary health A logo for the Planetary health category. Solutions for people A logo for the Solutions for people category. Thriving cities A logo for the Thriving cities category. University for future A logo for the University for future category.